Abstract
In this paper, new techniques are presented to either simplify or improve most existing upper bounds on the maximum-likelihood (ML) decoding performance of the binary linear codes over additive white Gaussian noise (AWGN) channels. Firstly, the recently proposed union bound using truncated weight spectrum by Ma et al. is re-derived in a detailed way based on Gallager's first bounding technique (GFBT), where the "good region" is specified by a sub-optimal list decoding algorithm. The error probability caused by the bad region can be upper-bounded by the tail-probability of a binomial distribution, while the error probability caused by the good region can be upper-bounded by most existing techniques. Secondly, we propose two techniques to tighten the union bound on the error probability caused by the good region. The first technique is based on pair-wise error probabilities. The second technique is based on triplet-wise error probabilities, which can be upper-bounded by the fact that any three bipolar vectors form a non-obtuse triangle. The proposed bounds improve the conventional union bounds but have a similar complexity since they involve only the Q-function. The proposed bounds can also be adapted to bit-error probabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.