Abstract

The performance of a wavelength-division multiplexing (WDM) optical network can be severely degraded due to fiber nonlinear effects. In the case where nonzero dispersion (NZD) fibers are employed, the four-wave mixing (FWM) effect sets an upper limit on the input power, especially in the case of narrow channel spacing. In order to reduce FWM-induced distortion two new techniques, the hybrid amplitude-/frequency-shift keying (ASK/FSK) modulation and the use of prechirped pulses are investigated. It is shown that both techniques can greatly improve the Q-factor in a 10 Gb/s WDM system. This happens even for very high input powers (/spl sim/10 dBm), where the degradation of the conventional WDM system is prohibitively high. The proposed methods are also applied and tested in higher bit rates (40 Gb/s). It is deduced that although the hybrid ASK/FSK modulation technique marginally improves the system performance, the optical prechirp technique can still be used to greatly increase the maximum allowable input power of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.