Abstract

In this work, we present number-theoretic and algebraic-geometric techniques for bounding the stabilizer rank of quantum states. First, we refine a number-theoretic theorem of Moulton to exhibit an explicit sequence of product states with exponential stabilizer rank but constant approximate stabilizer rank, and to provide alternate (and simplified) proofs of the best-known asymptotic lower bounds on stabilizer rank and approximate stabilizer rank, up to a log factor. Second, we find the first non-trivial examples of quantum states with multiplicative stabilizer rank under the tensor product. Third, we introduce and study the generic stabilizer rank using algebraic-geometric techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.