Abstract
Abstract The physical properties and application performance of rubber blends are highly dependent on the curing behavior of blend components, morphology, and network structure. Crosslink density or molecular weight between crosslinks characterizes the network structure. It is desirable to develop correlations between product attributes, such as flex, ozone resistance, and permeability with crosslink density of the individual phase in the blend. This will aid developing high performance rubber blends via curative systems, elastomer components and concentration, bromine composition distribution, and processing condition optimization. One major road block is to quantitatively and unambiguously measure the individual phase crosslink density in the blend. A method has been developed and verified with solvent freezing point depression technique. The method can quantitatively determine the individual phase crosslink density in polyisoprene (IR)/Brominated Poly-(isobutylene-co-paramethyl styrene) (BIMS) blends. The method is based on the principle that the molecular weight between crosslinks does not change in different solvents. This is coupled with mass balance equations to determine rubber volume fraction of each phase in the swollen blends. The crosslink density of each phase is then calculated by the Flory-Rehner equation. The method can evaluate the effect of curative distribution, processing conditions, and curative systems on GPR/BIMS blend performance. IR and BIMS blends were cured with zinc oxide and sulfur in this study. It was found that the IR and BIMS phase crosslink density reaches a plateau when the amount of the curing agent is greater or equal to 1.25 phr. The IR phase has a greater crosslinking density than the BIMS phase in the blends. These are valuable information to optimize the curative systems and enhance product attributes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.