Abstract

The principal objective of this study was to develop a novel method based on confocal microscopy and a solvatochromic fluorescent dye, Nile red (NR) to quantify the main types of lipids in a single mammalian oocyte and embryo. We hypothesize that NR staining followed by the decomposition of NR-spectra identifies and quantifies the triglycerides, phospholipids, and cholesterol in a single oocyte and embryo. We analyzed the lipid droplets in porcine oocytes and pre-implantation embryos up to the hatched blastocyst stage developed in vivo and in cultured blastocysts. The emission spectrum of NR-stained mixture of different lipid types is a convolution of several component spectra. The principal component analysis (PCA) and a multivariate curve resolution-alternating least squares method (MCR-ALS) allowed to decompose the emission spectrum and quantify the relative amount of each lipid type present in mixture. We reported here that the level of the triglycerides, phospholipids and cholesterol in lipid droplets significantly decreases by 17.7%, 26.4% and 23.9%, respectively, from immature to mature porcine oocytes. The content of triglycerides and phospholipids remains unchanged in droplets of embryos from the zygote up to the morula stage. Then the triglyceride level decreases in the blastocyst by 15.1% and in the hatched blastocyst by 37.3%, whereas the amount of phospholipids decreases by 10.5% and 12.5% at the blastocyst and hatched blastocyst stages, respectively. In contrast, the content of cholesterol in droplets does not change during embryo cleavage. The lipid droplets in the blastocyst produced in vivo contain lower amounts of triglycerides (by 26.1%), phospholipids (by 14.2%) and cholesterol (by 34.8%) than those in the blastocyst cultured in NCSU-23 medium. In conclusion, our new technique is suitable to quantify the content of triglycerides, phospholipids and cholesterol in individual mammalian oocytes and embryos. Our findings indicate an important role for lipids during porcine oocyte maturation and early embryonic development, and suggest an altered lipid metabolism in cultured embryos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.