Abstract
A mathematical model which predicts the intraerythrocytic stages of Plasmodium falciparum infection was developed using data from malaria-infected mice. Variables selected accounted for levels of healthy red blood cells, merozoite (Plasmodium asexual phase) infected red blood cells, gametocyte (Plasmodium sexual phase) infected red blood cells and a phenomenological variable which accounts for the mean activity of the immune system of the host. The model built was able to reproduce the behavior of three different scenarios of malaria. It predicts the later dynamics of malaria-infected humans well after the first peak of parasitemia, the qualitative response of malaria-infected monkeys to vaccination and the changes observed in malaria-infected mice when they are treated with antimalarial drugs. The mathematical model was used to identify new targets to be focused on drug design. Optimization methodologies were applied to identify five targets for minimizing the parasite load; four of the targets thus identified have never before been taken into account in drug design. The potential targets include: 1) increasing the death rate of the gametocytes, 2) decreasing the invasion rate of the red blood cells by the merozoites, 3) increasing the transformation of merozoites into gametocytes, 4) decreasing the activation of the immune system by the gametocytes, and finally 5) a combination of the previous target with decreasing the recycling rate of the red blood cells. The first target is already used in current therapies, whereas the remainders are proposals for potential new targets. Furthermore, the combined target (the simultaneous decrease of the activation of IS by gRBC and the decrease of the influence of IS on the recycling of hRBC) is interesting, since this combination does not affect the parasite directly. Thus, it is not expected to generate selective pressure on the parasites, which means that it would not produce resistance in Plasmodium.
Highlights
According to the World Health Organization [1], malaria affects more than 500 million people worldwide, killing between 1 and 2.5 million people annually, most of whom are children under the age of five
In order to analyze the dynamics of the infection process by Plasmodium and to propose new targets with potential for drug discovery against malaria, an ordinary differential equations mathematical model was developed
The proposed model is focused on a critical phase of the Plasmodium falciparum life cycle within the host, namely the processes involved after the release of liver cell merozoites into the bloodstream
Summary
According to the World Health Organization [1], malaria affects more than 500 million people worldwide, killing between 1 and 2.5 million people annually, most of whom are children under the age of five. It is caused by Plasmodium genus parasites (Plasmodium vivax, P. ovale, P. malariae, P. knowlesi and P. falciparum), P. falciparum being the most lethal. To make the situation even worse, the efficacy of transmission control by means of insecticide-treated nets and indoor residual spraying is dropping, because resistance to insecticides is increasing among mosquitoes in Africa [3]. Because of that malaria control is becoming totally dependent on pharmacological treatments
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.