Abstract
A new and easy method for preparing blue sodalite pigments which involves high-temperature calcination of sodalite samples synthesized with aluminum sulfate and an organic template, is presented. Calcination generated the S(3)(-) and S(2)(-) radicals, and the effects of the Al/Si ratio and the calcination temperature on the nature and amounts of the radicals were examined. The radicals were characterized in detail by continuous wave and pulsed EPR at X- and W-band frequencies (approximately 9 and 95 GHz, respectively) complemented by UV-vis measurements. The high-field electron-paramagnetic resonance (EPR) measurements allowed us to clearly resolve the g anisotropy of S(3)(-) and W-band electron nuclear double resonance (ENDOR) measurements detected strong coupling with extra-framework (23)Na cations and weak coupling with framework (27)Al. On the basis of the spectroscopic results and density functional theory (DFT) calculations of the g-tensors of S(3)(-) and S(2)(-) radicals, the EPR signals were attributed to three different radicals, all with the open structure C(2v), that are located within the sodalite beta cages. While two of these radicals are well isolated, the third one is associated with an exchange-narrowed signal originating from S(3)(-) radicals in nearby sodalite cages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.