Abstract

The gas separation performance of biopolymers is still scarcely characterized, mostly because of their poor thermomechanical properties and high crystallinity which is associated to low permeability. In this work we characterize the gas transport in a poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) random copolymer, that has a relatively low crystallinity and good mechanical properties, combined with a renewable origin, biodegradability and biocompatibility. In the study we also compared several solvents for membrane casting, with different toxicity levels. We found that dimethyl carbonate allows the production of polymer films with transport properties similar to those obtained with the more toxic CHCl3, and it leads also to stable crystallinity of the samples over time. PHBV films show a size-sieving gas separation behaviour, as the permeability decreases significantly with the gas kinetic diameter. However, the strong energetic interactions of CO2 with the polymer matrix, confirmed by the Flory-Huggins model, induce a marked solubility-driven CO2/N2 and CO2/CH4 selectivity, which could make the material potentially interesting for CO2 removal processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.