Abstract

The wheel re-profiling is an important part of railway wheelset maintenance. Researchers and railway operators have been very concerned about how to minimize the loss of time during wheel re-profiling without decreasing safety. Avoiding wheelset disassembly means considerable time savings, while reducing wheel damage during operation. Underfloor wheel lathes are the most appropriate tool to achieve this double objective, and therefore the most used nowadays. Multi-cut tool lathes have the disadvantage of being extremely expensive. On the other hand, with single tool lathes, re-profiling is not smooth or safe enough when current convex profile support rollers are used. It is well known by the companies that during reprofiling the wheel suffers impacts/damaged. In this article, a methodology to optimize the profile of the support rollers used in underfloor single tool lathes for railway wheel re-profiling is proposed. This novel profile design will minimize damage and increase the safety of such lathes, since it proposes a greater smoothness in the process. Simulations of re-profiling process have been carried out by the finite element method showing that the designed roller profile reduces drastically the impact/damage during the operation. The impact generated between the re-profiling wheel and the rollers is avoided. Profile-optimized support rollers have been used in a real underfloor wheel lathe, showing good results.

Highlights

  • The wheel re-profiling is an important part of railway wheelset maintenance

  • This paper proposes a method to find the optimal shape of the support rollers of a single tool underfloor wheel lathe, to avoid sudden load transfers during the process

  • A problem associated with wheel re-profiling process by under-floor lathes with a single cutting tool is first discussed

Read more

Summary

Introduction

The wheel re-profiling is an important part of railway wheelset maintenance. Researchers and railway operators have been very concerned about how to minimize the loss of time during wheel re-profiling without decreasing safety. This paper proposes a method to find the optimal shape of the support rollers of a single tool underfloor wheel lathe, to avoid sudden load transfers during the process.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.