Abstract

Parallel robots are usually required to perform real-time tracking control tasks in the presence of external disturbances in the complex environment. Conventional zeroing neural-dynamics (ZNDs) provide an alternative solution for the real-time tracking control of parallel robots due to its capacity of parallel processing and nonlinearity handling. However, it is still a challenge for the solution in a unified framework of the ZND to deal with the external disturbances, and simultaneously possess a finite-time convergence property. In this paper, a novel ZND model by exploring the super-twisting (ST) algorithm, named ST-ZND model, is proposed. The theoretical analyses on the global stability, finite-time convergence, as well as the robustness against the external disturbances are rigorously presented. Finally, the effectiveness and superiority of the ST-ZND model for the real-time tracking control of parallel robots are demonstrated by two illustrative examples, comparisons, and convergence tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call