Abstract

The entopeduncular nucleus (EPN) and substantia nigra pars reticulata (SNr) constitute the output nuclei of the basal ganglia, but studies on the EPN are limited compared with those on the SNr. Both nuclei receive projections from the striatum with axons containing substance P (SP) and cannabinoid type-1 receptor (CB1R), and immunoreactivities for these substances show complementary patterns in the striatum and SNr. In this study, we revealed a similar complementarity in the mouse EPN, combined it with region-specific neuronal distributions, and defined subregions of the EPN. First, the EPN was divided into two areas, one showing low SP and high CB1R (lSP/hCB1R) immunoreactivities, and the other showing high SP and low CB1R (hSP/lCB1R). The former received inputs from the dorsolateral striatum that are innervated by sensorimotor cortices, whereas the latter received inputs from the medial striatum that are innervated by limbic/association cortices. Then, the lSP/hCB1R area was further divided into the dorsolateral subregion in the rostral EPN and the core subregion in the caudal EPN, the latter characterized by the concentration of parvalbumin-positive neurons targeting the ventral anterior–ventral lateral thalamic nucleus. The hSP/lCB1R area was divided into the ventromedial subregion in the rostral EPN and the shell subregion in the caudal EPN, the former characterized by the concentration of nitric oxide synthase-positive neurons targeting the lateral habenula (LHb). Somatostatin-positive neurons targeting the LHb were located diffusely in three subregions other than the core. These findings illuminate structural organization inside the basal ganglia, suggesting mechanisms for sorting diverse information through parallel loops with differing synaptic modulation by CB1R.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.