Abstract

Abstract A series of carbon blacks of widely varying morphology and microstructure were analyzed for surface compositional properties employing SIMS, XPS/ESCA, and GC-MS. These studies were supported by bulk analyses for hydrogen and oxygen content. Surface reactivity was assessed by means of inverse gas chromatography, moisture adsorption, and oxidation in an oxygen plasma. To directly assess carbon-black-polymer interaction, the carbon blacks were evaluated in SBR and IIR compounds for stress-strain and dynamic properties as well as bound rubber. The major findings of these studies are: 1. The combined results of hydrogen content, SIMS, and pyrolysis-GC-MS suggest a complex hydrogen functionality at the carbon-black surface, which governs the level of interaction with elastomers. 2. SIMS analyses have shown that the hydrogen functionality at the carbon-black surface is preserved after an 1173 K heat treatment in an inert atmosphere. 3. Gas-solid chromatography results indicate that this technique may be very useful to determine the degree of heterogeneity of a carbon-black surface. It also provides a tool to characterize the nature of the surface sites which are responsible for such a heterogeneity. 4. Moisture-adsorption rates provides a means to explore the reactivity of carbon-black-surface sites. Initial rates of adsorption can be well explained by a second-order-rate mechanism. 5. Bound-rubber development (SBR) and oxygen content per square meter of carbon-black-surface area were directly proportional to the hydrogen content of the black. The hydrogen content is considered to be the primary compositional factor relating to carbon-black-surface activity, while bound rubber and oxygen levels are specific measures of surface reactivity. 6. The slope of the stress-strain curves (or the modulus value) in the λ=1 to 3 region divided by the black networking factor, η (E′ at 2% ptp ÷ at 25% ptp), is sensitive to changes in black-polymer interaction. This ratio (σ/η or M/η) shows an excellent correlation with black hydrogen content and bound rubber (SBR). 7. The σ/η values for SBR and IIR are highly correlated, although the values for SBR are two to three times higher, and there was no measurable bound rubber for any of the IIR compounds. 8. The σ/η values for IIR (λ=2−3) and the oxygen/m2 values were found to be the best discriminators for black-polymer interaction in explaining within-grade treadwear variations in SBR/BR multisection radial-passenger treads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call