Abstract

Fe-based superconductors have attracted research interest because of their rich structural variety, which is due to their layered crystal structures. Here we report the new-structure-type Fe-based superconductors CaAFe4As4 (A = K, Rb, Cs) and SrAFe4As4 (A = Rb, Cs), which can be regarded as hybrid phases between AeFe2As2 (Ae = Ca, Sr) and AFe2As2. Unlike solid solutions such as (Ba(1-x)K(x))Fe2As2 and (Sr(1-x)Na(x))Fe2As2, Ae and A do not occupy crystallographically equivalent sites because of the large differences between their ionic radii. Rather, the Ae and A layers are inserted alternately between the Fe2As2 layers in the c-axis direction in AeAFe4As4 (AeA1144). The ordering of the Ae and A layers causes a change in the space group from I4/mmm to P4/mmm, which is clearly apparent in powder X-ray diffraction patterns. AeA1144 is the first known structure of this type among not only Fe-based superconductors but also other materials. AeA1144 is formed as a line compound, and therefore, each AeA1144 has its own superconducting transition temperature of approximately 31-36 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.