Abstract

The study of [bis(L‑alaninato) diaqua] nickel(II) dihydrate crystal using Raman scattering and X-ray diffraction as a function of temperature is reported in this paper. Thermal analysis (TGA and DSC) complementary measurements were also performed in order to obtain information on structural changes and mass loss occurred in this material. It was identified that the crystal undergoes loss of water at two different temperatures: ~340 and 393 K. X-ray diffraction measurements showed two phase transformations related to these two water loss events. After heating up to 423 K, the sample was cooled down to 298 K and its diffraction pattern presented the same pattern at 423 K, evidencing an irreversible phase transformation. The diffraction results also showed that crystal goes to monohydrate and anhydrous phases. Furthermore, cell lattice parameters and space groups of both phases were determined by applying Rietveld refinement through Le Bail method, demonstrating that their structures belong to the P21 and C2/c space groups, both with monoclinic symmetry. In addition, assignments of Raman spectra vibrational bands (at 300 K) are provided. The high-temperature Raman spectra were obtained in the 100-3500 cm-1 range, where it was observed several abrupt changes in the intensity of low-wavenumber bands and the appearance/disappearance of some vibrational modes that have coupling with OH⋯O hydrogen bonds. These spectral changes are in good agreement with X-ray diffraction and thermal analyses data. Finally, we obtained Raman measurements at low temperatures, from which we identified that the crystal structure is extremely stable throughout the temperature range of 293-10 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.