Abstract

A novel ultralow on-resistance strained silicon-on-insulator (SOI) lateral double-diffused MOSFET with silicon-germanium (Si <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> Ge <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> ) P-top layer and trench gate (P <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">SiGe</sub> -TG LDMOS) is proposed in this letter. The Si <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> Ge <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> P-top layer (P <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">SiGe</sub> ) as a stressor introduces the beneficial stress in the drift and channel regions to enhance the electron mobility. Besides, in the off state, both P-top layer and trench gate (TG) jointly assist in depleting the N-drift region, which leads to an allowable highly-doped N-drift region. As a consequence, P <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">SiGe</sub> -TG LDMOS realizes an ultralow specific on-resistance ( R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">on,sp</sub> ) resulting from the highly-doped N-drift region. Furthermore, the enhanced electric field in the trench oxide leads to an increase in breakdown voltage (BV). The simulation results show that, compared with the trench-gate SOI LDMOS (TG LDMOS) and the trench-gate SOI LDMOS with Si-based P-top layer (P <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Si</sub> -TG LDMOS), the introduction of P <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">SiGe</sub> layer leads to 42% and 26% reduction in R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">on,sp</sub> , respectively. The figure-of-merit (FOM) of P <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">SiGe</sub> -TG LDMOS increases from 8.1 MW/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> of TG LDMOS and 9.4 MW/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> of P <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Si</sub> -TG LDMOS to 12 MW/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , which realizes a superior performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.