Abstract
In this investigation, we unfold the Jensen–Mercer (mathtt{J-M}) inequality for convex stochastic processes via a new fractional integral operator. The incorporation of convex stochastic processes, the mathtt{J-M} inequality and a fractional integral operator having an exponential kernel brings a new direction to the theory of inequalities. With this in mind, estimations of Hermite–Hadamard–Mercer (mathtt{H-H-M})-type fractional inequalities involving convex stochastic processes are presented. In the context of the new fractional integral operator, we also investigate a novel identity for differentiable mappings. Then, a new related mathtt{H-H-M}-type inequality is presented using this identity as an auxiliary result. Applications to special means and matrices are also presented. These findings are particularly appealing from the perspective of optimization, as they provide a larger context to analyze optimization and mathematical programming problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.