7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1186/s13019-021-01483-1
Copy DOIJournal: Journal of Cardiothoracic Surgery | Publication Date: Apr 21, 2021 |
License type: open-access |
BackgroundMany patients with mitral regurgitation are denied open-heart surgery due to perceived high risk. Transcatheter mitral valve replacement is a therapeutic alternative for patients at high surgical risk. This study aimed to assess the feasibility of a new self-expanding valved stent for transcatheter mitral valve replacement via apex in an acute animal model.MethodsEight porcine experiments were performed in the acute study. A left thoracotomy was performed, and the new self-expanding transcatheter valved stent was deployed under fluoroscopic guidance in the native mitral annulus via apex. Hemodynamic data were recorded before and after implantation. Mitral annulus diameter and valve area were measured using echocardiography. Transvalvular and left ventricular outflow tract pressure gradients were measured using invasive methods.ResultsSeven animals underwent successful transapical mitral valve replacement; the implantation was unsuccessful in one animal. The mean procedure time, defined from placement to tightening of the purse-string suture, was 17.14 ± 7.86 min. Hemodynamic data before and after transapical mitral valve replacement showed no difference in statistical analysis. The mean diameter of the self-expanding device after implantation was 2.58 ± 1.04 cm; the mean functional area was 2.70 ± 0.26 cm2. Trace-to-mild central and paravalvular leaks were detected in 7 valves. The mean pressure gradient across the self-expanding device was 2.00 ± 0.82 mmHg; the corresponding gradient across the LVOT was 3.28 ± 1.11 mmHg. Postmortem evaluation confirmed precise device positioning in 7 animals with no signs of LVOT obstruction.ConclusionTranscatheter mitral replacement of the new valved stent was confirmed feasible in acute preclinical models. The new stent reveals optimal design parameters.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.