Abstract

Cameleons are genetically encoded fluorescence resonance energy transfer (FRET)-based Ca(2+) indicators. Attempts to use cameleons to detect neural activity in vertebrate systems have been largely frustrated by the small FRET signal, in contradistinction to the higher signals seen in Drosophila and Caenorhabditis elegans. We have developed a statistical optimization method capable of detecting small ratiometric signals in noisy imaging data, called statistical optimization for the analysis of ratiometric signals. Using this method, we can detect and estimate anticorrelated ratiometric signals with subcellular resolution in cultured, dissociated zebrafish spinal neurons expressing cameleon or loaded with fluo-4 and fura-red. This method may make it possible to use yellow cameleons for measuring neural activity at high resolution in transgenic animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.