Abstract

A certain class of nonlinear differential equations representing a generalized Van der Pol oscillator is proposed in which we study the behavior of the existing solution. After using the appropriate variables, the first Levinson’s change converts the equations into a system with two equations, and the second converts these systems into a Lipschitzian system. Our main result is obtained by applying the Second Bogolubov’s Theorem. We established some integrals, which are used to compute the average function of this system and arrive at a new general condition for the existence of an asymptotically stable unique periodic solution. One of the well-known results regarding asymptotic stability appears, owing to the Second Bogolubov’s Theorem, and the advantage of this method is that it can be applied not only in the periodic dynamical systems, but also in non-almost periodic dynamical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.