Abstract

A major problem in solving multi-waves inverse problems is the presence of critical points where the collected data completely vanishes. The set of these critical points depend on the choice of the boundary conditions, and can be directly determined from the data itself. To our knowledge, in the most existing stability results, the boundary conditions are assumed to be close to a set of CGO solutions where the critical points can be avoided. We establish in the present work new weighted stability estimates for an electro-acoustic inverse problem without assumptions on the presence of critical points. These results show that the Lipschitz stability far from the critical points deteriorates near these points to a logarithmic stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.