Abstract

The robust stability problem for linear time-delay systems with general linear delayed impulses is investigated. Different from the previous results, the impulse-delays are allowed to be larger than the impulse period. An auxiliary state variable is introduced to construct an augmented model of the impulsive system, under which the discrete dynamics introduced by impulse-delays can be highlighted. A novel piecewise Lyapunov functional is introduced to analyze the stability of the augmented model. This functional is continuous along the trajectories of the augmented model, and is not required to be positive-definite at non-impulse instants. LMI-based exponential stability conditions are derived, which depend on both the impulse-dwell-time and the impulse-delay-interval. Numerical examples show that the obtained stability criteria are able to handle the benefit/harmful impulse-delays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.