Abstract

<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> A new algorithm for the estimation of the frequency of single-tone signals is presented in this paper. The algorithm works in the frequency domain and is based on best fitting a theoretical spectrum of a single-tone signal that is windowed using a rectangular window on the spectrum of the sampled signal. Using this iterative process, the algorithm compensates the spectrum leakage caused by incoherent sampling and a finite number of samples. Due to leakage compensation, the algorithm provides accurate estimates of the signal's frequency, amplitude, and phase. The influence of noise and harmonic and interharmonic distortions on the proposed algorithm was investigated and is reported here. The algorithm's performance was compared with several other frequency-estimation algorithms (mostly those working in the frequency domain). Since the algorithm is intended for power quality measurements (although it is not limited to this application), it was also tested on signals measured in a single-phase power system. </para>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.