Abstract

The simultaneous acquisition of spatial information, spectral information and polarimetric information can obtain more characteristic information to distinguish targets. The conventional spectral polarization imaging system mainly includes the filter/polarization wheel rotation system, the crystal modulation system and multi-path beam splitting system. The disadvantages of these systems are: unsynchronized spectral polarization detection, requiring dynamic modulation, complex system, etc. To solve these problems, a spectral polarization detection technology based on optical fiber image bundle is proposed, which combines optical fiber imaging spectral technology with pixel level polarization detection technology. The input shape of the optical fiber image bundle is plane, and the output shape is linear. Optical fiber image bundle can transform the information of array target into that of linear array. The linear array information is the input of spectral imaging system. The polarization detection uses a micron level polarization array to match the pixel size of the detector. The technology can synchronously acquire the two-dimensional spatial information, the spectral information and linear polarization information of the target. The technology can be used to image the area target in snapshot mode. The experimental device is set up to obtain the spectral image in the visible light range, as well as the polarization degree image and polarization angle image of each spectral segment. The data acquisition ability of the system is verified. With the improvement of optical fiber manufacturing technology, the integration of optical fiber is getting better, and the scale of optical fiber is getting larger. The technology will have a high application value in astronomical observation, atmospheric detection, target recognition and other fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call