Abstract
<p style='text-indent:20px;'>We present a new method based on unification of fictitious time integration (FTI) and group preserving (GP) methods. The GP method is applied in numerically discretized ordinary differential equations obtained from application of FTI method to a given partial differential equation (PDE). The algorithm is applied to hyperbolic telegraph equation and utilizes the Cayley transformation and the Pade approximations in the Minkowski space. It avoids unauthentic solutions and ghost fixed points which is one of the advantages of the present method over other related numerical methods in the literature. The technique is tested on three specific examples for various parameter values appearing in the telegraph equation and discretization steps. Such solutions of the telegraph equation are obtained first time in this paper. Illustrative figures are provided. Efficiency of the method is determined by an error analysis which is achieved by comparing numerical solutions with exact solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.