Abstract

This paper introduces a new method for solving ordinary differential equations (ODEs) that enhances existing methods that are primarily based on finding integrating factors and/or point symmetries. The starting point of the new method is to find a non-invertible mapping that maps a given ODE to a related higher-order ODE that has an easily obtained integrating factor. As a consequence, the related higher-order ODE is integrated. Fixing the constant of integration, one then uses existing methods to solve the integrated ODE. By construction, each solution of the integrated ODE yields a solution of the given ODE. Moreover, it is shown when the general solution of an integrated ODE yields either the general solution or a family of particular solutions of the given ODE. As an example, new solutions are obtained for an important class of nonlinear oscillator equations. All solutions presented in this paper cannot be obtained using the current Maple ODE solver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.