Abstract

Abstract The sodium-rich sulfido and selenido metallates Na12MnIn2 Q 10 (Q = S/Se) were synthesized in pure phase from melts composed of stoichiometric quantities of the manganese monochalcogenides MnQ, elemental indium and the chalcogens together with either Na2S (Q = S) or elemental sodium (Q = Se) as starting material. The samples were heated up to maximum temperatures of 1000/900 °C under an argon atmosphere; crystallization was achieved by slow cooling rates of 10 K h−1. The two isotypic compounds (monoclinic, space group P21/m, a = 678.26(2)/698.85(10), b = 2202.77(7)/2298.7(3), c = 766.39(3)/800.59(13) pm, β = 90.232(2)/90.147(5)°, Z = 2, R1 = 0.0516/0.0575) crystallize in a new structure type. According to the division of the formula as Na12[InQ 4][MnInQ 6] the salts contain ortho indate anions [InIII Q 4]5− besides hetero-bimetallic dimers [MnIIInIII Q 6]7−, which consist of two edge-sharing [MQ 4] tetrahedra. The seven crystallographically different sodium cations exhibit an either tetrahedral or octahedral coordination by the chalcogen atoms. Thus, the overall structure of the salt is best described by a hexagonal close packing of the sulfide/selenide anions, in which the octahedral voids of every second interlayer section are fully occupied by the (overall 5/f.u.) Na + positions with CN = 6. In the other half of the interlayer sheets, all tetrahedral voids (overall 10/f.u.) are occupied by the seven CN = 4 Na + cations, one In3+ of the ortho anion and the two Mn2+/In3+ cations (which statistically occupy one crystallographic site). This structure relation is also verified by a Bärnighausen group-subgroup tree connecting the h.c.p. (Mg type) aristotype (with its tetrahedral and octahedral voids) by an overall index of 60 with the structure of the two title compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.