Abstract

Abstract Current molecular biological approaches were developed primarily for characterization of single genes, not entire genomes, and, as such, are not ideally suited to analysis of complex traits and population-based molecular genetics. Despite rapid progress in the human genome project effort, there is little doubt that radically new conceptual approaches are needed before routine whole genome-based analyses can be undertaken by both basic research and clinical laboratories. Physical mapping of genomes, using restriction endonucleases, has played a major role in the identification and characterizing various loci, for example, by aiding clone contig formation and by characterizing genetic lesions. Restriction maps provide precise genomic distances, unlike ordered sequence-based landmarks such as Sequence Tagged Sites (STSs), that are essential for optimizing the efficiency of sequencing efforts, and for determining the spatial relationships of specific loci. When compared to tedious hybridization-based fingerprinting approaches, ordered restriction maps offer relatively unambiguous clone characterization that is useful in contig formation, establishment of minimal tiling paths for sequencing, and preliminary characterization of sequence lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.