Abstract

A crucial step in the process of γ-ray tracking is related to the location of the interaction points of all the γ-rays within the AGATA (Advanced GAmma Tracking Array) segmented detectors. This requires a full understanding of the sensitivity of each highly segmented high-purity germanium (HPGe) detectors via the characterisation of the 2D and 3D position response. In this paper, we describe the experimental scanning setup that we developed at Orsay for the AGATA detectors. A collimated 137Cs source on an automated x–y positioning table was used for the front face scanning of the AGATA symmetric prototype detector. The 3D scanning measurement is performed using coincidence techniques based on γ-ray Compton scattering from the AGATA detector into an ancillary coupled detector. In our setup, TOHR (high resolution tomograph developed for small animal imaging) is used as an ancillary detector. The data is collected using TIGRESS cards for digital signal processing. The data flow, readout and storage is NARVAL as used for the full AGATA project. The analysis of the collected data and the obtained results is shown to illustrate our device performances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call