Abstract
A new rotaxane (BPAAn/β-CD), consisting of an anthracene-based semi-conducting material (BPAAn) encapsulated into β-cyclodextrin (β-CD), has been synthesized via the Williamson reaction in solvent-free conditions. The supramolecular structure of the compound was confirmed by NMR and FT-IR spectroscopies. The optical and morphological properties of this organic material were investigated by UV–visible absorption, photoluminescence spectroscopy and atomic force microscopy. BPAAn/β-CD film has an optical gap of 2.9eV and exhibits green photoluminescence. An optical gap of 2.9eV was estimated from the absorption edge of the rotaxane thin film. The BPAAn/β-CD exhibits a blue photoluminescence in dilute solution; whereas, a green emission was observed in the solid state, due to the π–π interaction in the anthracene moieties. The rotaxane shows a significantly enhanced PL quantum yield and improved film quality in comparison with the free BPAAn. The HOMO and LUMO levels were estimated using cyclic voltammetry analysis, and show enhanced electron affinity of the BPAAn in its complexed form. A single-layer device with the configuration [ITO/rotaxane/Aluminum] has been elaborated and showed low turn-on voltage of 5V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.