Abstract

In the present chapter we investigated the self similar flow behind a spherical shock wave propagating in a medium with increasing density, in the presence of magnetic fields. The medium is assumed to be non gravitational due to the heavy nucleus at origin. The medium ahead and behind the shock front are assumed to be inviscid. The initial density of gas is assumed to vary as some power of distance. It is assumed that gas is grey and opaque. The assumption of optically thick grey gas is physically consistant with the neglect of radiation pressure and radiation energy. Total energy of the flow field behind the spherical shock is assumed to be increasing with time, where the gas ahead of the shock is assumed to be at rest. The results of numerical calculations were shown in the form of graphs. A complete study was made for axial and azimuthal magnetic field. Also the effect of variation of initial density behind the shock, shock velocity and respective magnetic fields were investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.