Abstract
We propose a new second-order cone linear complementarity problem (SOCLCP) formulation for the numerical finite element analysis of three-dimensional (3D) frictional contact problems by the parametric variational principle. Specifically, we develop a regularization technique to resolve the multi-valued difficulty involved in the frictional contact law, and use a second-order cone complementarity condition to handle the regularized Coulomb friction law in contact analysis. The governing equations of the 3D frictional contact problem is represented by an SOCLCP via the parametric variational principle and the finite element method, which avoids the polyhedral approximation to the Coulomb friction cone so that the problem to be solved has much smaller size and the solution has better accuracy. In this paper, we reformulate the SOCLCP as a semi-smooth system of equations via a one-parametric class of second-order cone complementarity functions, and then apply the non-smooth Newton method for solving this system. Numerical results confirm the effectiveness and robustness of the SOCLCP approach developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.