Abstract

New second- and fourth-order accurate semianalytical methods are introduced for the numerical solution of the one-dimensional nonlinear cubic Schrödinger equation. These methods are based on the combination of the Method of Lines and the Lanczos's Tau Method. The methods are self-starting and proved to be stable, accurate, and energy conservative for long time-integration periods. Approximate solutions are sought, on segmented sets of parallel lines, as finite expansions in terms of a given orthogonal polynomial basis. We have carried out numerical application concerning several cases for the propagation, collision and the bound states of N solitons, 2 ≤ N ≤ 5. Accurate results have been obtained using both shifted Chebyshev and Legendre polynomials. These results compare competitively with some other published results obtained using different methods. Dedicated to the memory of Professor David J. Evans Former Editor of International Journal of Computer Mathematics, October 2005

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call