Abstract

Rhodnius prolixus, a blood-sucking triatomine with domiciliary anthropophilic habits, is the main vector of Chagas disease. The current paradigm of Trypanosoma cruzi transmission in Columbia includes a sylvatic and domiciliary cycle co-existing with domestic and sylvatic populations of reservoirs. The aim of this study is to evaluate the population densities and relative abundance of triatomines and mammals that may be involved in the sylvatic cycle of Chagas disease to clarify the epidemiological scenario in an endemic area in the province of Casanare. Insect vectors on Attalea butyracea palms were captured using both manual searches and bait traps. The capture of mammals was performed using Sherman and Tomahawk traps. We report an infestation index of 88.5% in 148 palms and an index of T. cruzi natural infection of 60.2% in 269 dissected insects and 11.9% in 160 captured mammals. High population densities of triatomines were observed in the sylvatic environment and there was a high relative abundance of reservoirs in the area, suggesting a stable enzootic cycle. We found no evidence of insect domiciliation. Taken together, these observations suggest that eco-epidemiological factors shape the transmission dynamics of T. cruzi, creating diverse scenarios of disease transmission.

Highlights

  • Vector dispersion between domestic and wild habitats may occur both actively, when insects are attracted to houses by light and passively, for example, when palm leaves are used to build the roofs of rural dwellings in endemic areas (Guhl et al 2009)

  • The area in which this study was performed is important for Chagas disease transmission in Colombia

  • It is known that the region has high prevalence of triatomines in A. butyracea palms (Pinto et al 2005, Guhl et al 2007, 2009)

Read more

Summary

Introduction

Vector dispersion between domestic and wild habitats may occur both actively, when insects are attracted to houses by light and passively, for example, when palm leaves are used to build the roofs of rural dwellings in endemic areas (Guhl et al 2009). The use of cost-effective monitoring strategies depends on an understanding of such aspects as the population densities and reproductive cycles of vectors and reservoirs, the infestation indexes of palms growing close to dwellings and the infection indexes of triatomines (Dias et al 2002). The results challenge the current paradigm of disease transmission characterised by co-existing sylvatic and domiciliary cycles. These findings could promote useful control measures for different epidemiological transmission scenarios

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call