Abstract
AbstractThe reformed Basel framework has left value at risk (VaR) as a basic tool of validating risk models. Within this framework, VaR independence tests have been regarded as critical to ensuring stability during periods of financial turmoil. However, until now, there is no consent among researchers regarding the choice of the appropriate test. The available procedures are either inaccurate in finite samples or need to rely on Monte Carlo simulations. To remedy these problems, we propose a new method for testing VaR models, based on the distribution of the number of runs. It outperforms the existing methods in two main aspects: First, it is exact in finite samples and thus allows for perfect control over the Type 1 error; second, its distribution is available in a closed form, so it does not require simulations before implementation. We show that it is the most adequate current procedure for testing low‐level VaR series, which corresponds to today's regulatory standards.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.