Abstract

Ultra‐fine zirconium diboride (ZrB2) powders have been synthesized using inorganic–organic hybrid precursors of zirconium oxychloride (ZrOCl2·8H2O), boric acid, and phenolic resin as sources of zirconia, boron oxide, and carbon, respectively. The reactions were substantially completed at a relatively low temperature (∼1500°C). The synthesized powders had a smaller average crystallite size (<200 nm), a larger specific surface area (∼32 m2/g), and a lower oxygen content (<1.0 wt%), which were superior to some commercially available ZrB2 powders. The thermodynamic change in the ZrO2–B2O3–C system was mainly studied by thermogravimetric and differential thermal analysis. The crystallite size and morphology of the synthesized powders were characterized by transmission electron microscopy and scanning electron microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call