Abstract

FoxH1 (Fast1) was first characterized as the transcriptional partner for Smad proteins. Together with Smad2/4, it forms the activin response factor (ARF) that binds to the Mix.2 promoter in Xenopus embryos. Foxh1 is expressed maternally in Xenopus. Depletion of maternal Foxh1 mRNA results in abnormalities of head and dorsal axis formation. We show that FoxH1 is required, together with XTcf3/beta catenin, to activate the zygotic expression of the nodal gene, Xnr3 in a Smad2-independent manner. In contrast, maternal FoxH1 acts as an inhibitor of Xnr5 and 6 transcription, preventing their upregulation on the ventral side of the embryo, by the maternal T-box transcription factor VegT. We conclude that maternal FoxH1 has essential, context-dependent roles in regulating the pattern of zygotic gene expression in the early embryo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.