Abstract
In the past decade, different robust estimators have been proposed by several researchers to improve the ability to detect non-random patterns such as trend, process mean shift, and outliers in multivariate control charts. However, the use of the sample mean vector and the mean square successive difference matrix in the T 2 control chart is sensitive in detecting process mean shift or trend but less sensitive in detecting outliers. On the other hand, the minimum volume ellipsoid (MVE) estimators in the T 2 control chart are sensitive in detecting multiple outliers but less sensitive in detecting trend or process mean shift. Therefore, new robust estimators using both merits of the mean square successive difference matrix and the MVE estimators are developed to modify Hotelling's T 2 control chart. To compare the detection performance among various control charts, a simulation approach for establishing control limits and calculating signal probabilities is provided as well. Our simulation results show that a multivariate control chart using the new robust estimators can achieve a well-balanced sensitivity in detecting the above-mentioned non-random patterns. Finally, three numerical examples further demonstrate the usefulness of our new robust estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.