Abstract

The current paper reports two new, robust, and efficient conditions for electromembrane extraction of acidic substances from human plasma. Two systems were developed based on eutectic solvents: A1 ("A" for acid) comprised dodecyl methyl sulfoxide and thymol in 1:2 ratio (w/w) as liquid membrane, while A2 used [6-methylcoumarin:thymol (1:2)]:2-nitrophenyl octyl ether in 2:1 ratio (w/w). The performance of A1 and A2 was characterized by extraction of 31 acidic model analytes (pharmaceutical drugs and nutrients) spiked into 100 µL human plasma diluted 1:1 (v/v) with phosphate buffer pH 7.4. The acceptor solution was 50mM NH4HCO3 buffer pH 10.0, and extraction was performed at an agitation rate of 750 RPM. Voltage and extraction time were 30V for 30min and 10V for 20min for A1 and A2, respectively. Under optimal conditions, A1 extracted analytes with 1.8 ≤ log P ≤ 6.0 with an average recovery (R) of 85.1%, while A2 extracted in a range of 0.5 ≤ log P ≤ 6.0 with an average recovery of 79.9%. Meanwhile, extraction current was low at 9 and 26 µA, respectively, which is indicative of good system robustness. Using UHPLC-MS/MS analysis of the acceptor solution, repeatability of the A1 and A2 methods was determined to be 2.8-7.7% and 3.3-9.4% for R > 40%, matrix effects were 82-117% and 84-112%, respectively, and linear calibration curves were obtained. The performance and compatibility with human plasma represent a major improvement over previous state-of-the-art liquid membranes for acidic analytes, namely 1-octanol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.