Abstract

In this paper, we deal with the polyhedral description and the resolution of the Mixed General Routing Problem. This problem, in which the service activity occurs both at some of the nodes and at some of the arcs and edges of a mixed graph, contains a large number of important arc and node routing problems as special cases. Here, a large family of facet-defining inequalities, the Honeycomb inequalities, is described. Furthermore, a cutting-plane algorithm for this problem that incorporates new separation procedures for the K-C, Regular Path-Bridge, and Honeycomb inequalities is presented. Branch and bound is invoked when the final solution of the cutting-plane procedure is fractional. Extensive computational experiments over different sets of instances are included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.