Abstract
This paper investigates the stability of a class of fractional-order static neural networks. Two new Lyapunov functions with proper integral terms are constructed. These integrals with variable upper limit are convex functions. Based on the fractional-order Lyapunov direct method and some inequality skills, several novel stability sufficient conditions which ensure the global Mittag–Leffler stability of fractional-order projection neural networks (FPNNs) are presented in the forms of linear matrix inequalities (LMIs). Two LMI-based Mittag–Leffler stability criteria with less conservativeness are given for a special kind of FPNNs. Finally, the effectiveness of the proposed method is demonstrated via four numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.