Abstract

In this paper, the problems of robust stability and stabilization, for the first time, are studied for delayed fractional-order linear systems with convex polytopic uncertainties. The authors derive some sufficient conditions for the problems based on linear matrix inequality technique combined with fractional Razumikhin stability theorem. All the results are obtained in terms of linear matrix inequalities that are numerically tractable. The proposed results are quite general and improve those given in the literature since many factors, such as discrete and distributed delays, convex polytopic uncertainties, global stability and stabilizability, are considered. Numerical examples and simulation results are given to illustrate the effectiveness of the effectiveness of our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.