Abstract

A lower bound on the length of binary self-orthogonal unequal error protection (UEP) codes is derived, and two design procedures for constructing optimal self-orthogonal UEP codes are proposed. With this lower bound, known self-orthogonal UEP codes can be evaluated. It is pointed out that, for given values of minimum distance and code rate, the self-orthogonal codes must be relatively long, so optimal self-orthogonal codes are not optimal in general. But self-orthogonal codes can be implemented simply, and they have error-correcting capabilities beyond those guaranteed by their minimum distance. These properties can be viewed as a partial compensation for using self-orthogonal codes.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.