Abstract

In this paper, we provide an efficient approach based on combination of singular value decomposition (SVD) and Lyapunov function methods to finite-time stability of linear singular large-scale complex systems with interconnected delays. By representing the singular large-scale system as a differential-algebraic system and using Lyapunov function technique, we provide new delay-dependent conditions for the system to be regular, impulse-free and robustly finite-time stable. The conditions are presented in the form of a feasibility problem involving linear matrix inequalities (LMIs). Finally, a numerical example is presented to show the validity of the proposed results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.