Abstract
Using ideas from automata theory we design a new efficient (deterministic) identity test for the noncommutative polynomial identity testing problem (first introduced and studied in [RS05, BW05]). More precisely, given as input a noncommutative circuit C{x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> , ldrldrldr , x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> } computing a polynomial in F{x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> , ldrldrldr , x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> } of degree d with at most t monomials, where the variables x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> are noncommuting, we give a deterministic polynomial identity test that checks if C equiv 0 and runs in time polynomial in d, n, |C|, and t. The same methods works in a black-box setting: given a noncommuting black-box polynomial f isin F{x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> , ldrldrldr , x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> } of degree d with t monomials we can, in fact, reconstruct the entire polynomial f in time polynomial in n, d and t. Indeed, we apply this idea to the reconstruction of black-box noncommuting algebraic branching programs (the ABPs considered by Nisan in [N91] and Raz-Shpilka in [RS05]). Assuming that the black-box model allows us to query the ABP for the output at any given gate then we can reconstruct an (equivalent) ABP in deterministic polynomial time. Finally, we turn to commutative identity testing and explore the complexity of the problem when the coefficients of the input polynomial come from an arbitrary finite commutative ring with unity whose elements are uniformly encoded as strings and the ring operations are given by an oracle. We show that several algorithmic results for polynomial identity testing over fields also hold when the coefficients come from such finite rings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.