Abstract
This paper investigates the exponential synchronization of delayed memristor-based neural networks (MNNs) with discontinuous activation functions. Based on the framework of Filippov solution and differential inclusion theory, using new analytical techniques and introducing suitable Lyapunov functionals, some novel sufficient conditions ensuring the exponential synchronization of considered networks are established via two types of discontinuous controls: linear feedback control and adaptive control. In particular, we extend the discontinuous control strategies for neural networks with continuous dynamics to MNNs with discontinuous activations. Numerical simulations are given to show the effectiveness of the theoretical results. Our approach and theoretical results have a leading significance in the design of synchronized MNN circuits involving discontinuous activations and time-varying delays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.