Abstract

This article deals with a two-person zero-sum game in which player I chooses in integer interval [1, N] two integer intervals consisting of p and q points where p + q < N, and player II chooses an integer point in [1, N]. The payoff to player I equals 1 if the point chosen by player II is at least in one of the intervals chosen by player II and 0 otherwise. This paper complements the results obtained by Ruckle, Baston and Bostock, Lee, Garnaev, and Zoroa, Zoroa and Fernandez-Saez. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 98–106, 2001

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.