Abstract

In this paper, we study a certain class of generalized Hurwitz-Lerch zeta functions. We derive several new and useful properties of these generalized Hurwitz-Lerch zeta functions such as (for example) their partial differential equations, new series and Mellin-Barnes type contour integral representations involving Fox’s H-function and a pair of summation formulas. More importantly, by considering their application in Number Theory, we construct a new continuous analogue of Lippert’s Hurwitz measure. Some statistical applications are also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.