Abstract

Using the result of a matrix model computation of the exact glueball superpotential, we investigate the relevant mass perturbations of the Leigh-Strassler marginal ``q'' deformation of N=4 supersymmetric gauge theory. We recall a conjecture for the elliptic superpotential that describes the theory compactified on a circle and identify this superpotential as one of the Hamiltonians of the elliptic Ruijsenaars-Schneider integrable system. In the limit that the Leigh-Strassler deformation is turned off, the integrable system reduces to the elliptic Calogero-Moser system which describes the N=1^* theory. Based on these results, we identify the Coulomb branch of the partially mass-deformed Leigh-Strassler theory as the spectral curve of the Ruijsenaars-Schneider system. We also show how the Leigh-Strassler deformation may be obtained by suitably modifying Witten's M theory brane construction of N=2 theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call