Abstract
A challenging Earth-observing satellite scheduling problem was recently studied in (Frank, Do and Tran 2016) for which the best resolution approach so far on the proposed benchmark is a time-indexed Mixed Integer Linear Program (MILP) formulation. This MILP formulation produces feasible solutions but is not able to prove optimality or to provide tight optimality gaps, making it difficult to assess the quality of existing solutions. In this paper, we first introduce an alternative disjunctive MILP formulation that manages to close more than half of the instances of the benchmark. This MILP formulation is then relaxed to provide good bounds on optimal values for the unsolved instances. We then propose a CP Optimizer model that consistently outperforms the original time-indexed MILP formulation, reducing the optimality gap by more than 4 times. This Constraint Programming (CP) formulation is very concise: we give its complete OPL implementation in the paper. Some improvements of this CP model are reported resulting in an approach that produces optimal or near-optimal solutions (optimality gap smaller than 1%) for about 80% of the instances. Unlike the MILP formulations, it is able to quickly produce good quality schedules and it is expected to be flexible enough to handle the changing requirements of the application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Conference on Automated Planning and Scheduling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.