Abstract

New results are presented for the elastic parabolic equation (PE). Galerkin’s method is applied to handle solid–solid interfaces efficiently. Rayleigh and Stoneley waves are handled with the elastic PE for the first time. Conversion formulas that are local in range are derived for obtaining quantities such as the horizontal displacement and the shear potential from the dependent variables of the nonstandard formulation of elasticity that is used with the elastic PE. The two-way elastic PE is implemented for problems involving realistic boundary and interface conditions and is applied to solve reverberation problems. The self-starter is generalized to problems involving a source in a solid layer. The energy-conserving PE is generalized to elastic media. The elastic PE is applied to problems involving the propagation of an interface wave up a sloping bottom and the cutoff of modes and coupling into shear-wave beams in the sediment. The latter problem is analogous to an acoustic problem that was solved by Jensen and Kuperman [‘‘Sound propagation in a wedge-shaped ocean with a penetrable bottom,’’ J. Acoust. Soc. Am. 67, 1564–1566 (1980)].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.